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The use of viral vectors in research is increasing, both in animal 
research and human gene therapy trials. As of June 2012, a total 
of 1843 gene therapy trials have been undertaken in 31 countries, 
most of which have used transduction (Figure 1) as a gene-deliv-
ery tool.22 A PubMed search with keywords viral vector showed a 
consistent increase in publications in this arena over the last 15 y 
(Figure 2). However, research in viral vector biosafety in the labo-
ratory animal setting has not risen in parallel, which is reflected in 
the relatively few publications during the same period.

In assessing risk regarding viral vector use in animal research, 
one must consider the hazards inherent to the viral vector itself, 
the animal model, the inserted gene construct, and the proposed 
research manipulations. A great deal is known about the original 
virus from which the vectors are genetically engineered, includ-
ing replicative ability, oncogenic potential, environmental sta-
bility, tissue and cellular tropism (amphotropic compared with 
ecotropic; Figure 1), and pathogenic characteristics—all of which 
helps to guide risk assessment.13,16-18,20,31 In addition, information 
regarding shedding duration, excretion routes, biodistribution, 
and other components vital to appropriate risk assessment of 
vectors is available from basic research studies and human gene 
therapy trials.44,47 However, informative data from these clinical 
trials does not always translate to animal models, thus leaving 
a huge gap in the knowledge base needed to make accurate risk 
assessments. Genetic manipulations to increase safety such as 
pseudotyping (Figure 1) and the creation of conditionally repli-
cating viral vectors must also be considered. The use of human-
ized mice has been proposed as a final step in preclinical viral 

vector risk assessment, but this condition does not address the 
inherent risks involved in animal research.3 Hazards implicit in 
working with animals such as bites and scratches can only be 
mitigated so much by engineering controls and personal pro-
tective equipment. In addition, the expansive use of sometimes 
uncharacterized transgenic animals makes it impossible to ad-
equately anticipate all potential risk scenarios. Often the greatest 
unknown is the effect of the transgene itself within the specific 
animal model. Institutions have more control over administrative 
practices meant to mitigate risks specific to the experimental pro-
tocol, including assurance of proper training and proficiency and 
occupational health assessment of research personnel.

The hazards associated with viral vectors make it incumbent on 
institutions to conduct risk assessment to make informed decisions 
regarding policies and guidelines. Even with the large number of 
prior viral vector gene therapy clinical trials performed with no 
significant ill effects in participants, sometimes life-threatening 
effects have been observed in a small number of participants and 
thus highlight potential repercussions from inappropriate handling 
and usage.43,49 This assessment is challenging for animal care and 
use programs, given the level of expertise in virology, human and 
animal physiology, and other disciplines needed to appropriately 
evaluate literature. In this review, we present current regulations, 
literature, and industry practices for some of the most widely used 
viral vector agents (adenoviruses, lentiviruses, herpesviruses, and 
adeno-associated viruses [AAV]). We evaluate general characteris-
tics, known hazards, and risk reduction practices in light of recent 
advances in molecular biology and viral engineering, in the hope 
of aiding institutions in their individual evaluations.

Current Regulations
Institutions receiving federal funding are subject to the NIH 
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Laboratories (BMBL, 5th edition) can also be used as a guidance 
document for working with poorly characterized viral vectors.12 
Many institutions do not distinguish between animal biosafety 
level (ABSL) 1 through 4 (as described in the BMBL) and BLN1 
through 4, choosing instead to follow specifications provided in 
the BMBL, which also covers work with other infectious agents. 
As such, we reference ABSL containment levels throughout this 
document for clarity.

Adenoviral vectors
Replication-competent and -deficient adenoviruses are classified 

as RG2 agents. Adenoviruses are nonenveloped double-stranded 
DNA viruses (Baltimore classification group 1) that have wide 
species and cellular tropism (amphotropic). Without alterations, 
adenoviruses do not integrate efficiently into the genome and 
therefore expression is generally transient. In adenoviral vectors, 
most of which are derived from type 5 adenoviruses,28 the key 
replication elements are deleted. New ‘gutless’ systems consist of 
only the adenoviral packaging system and contain no adenoviral 
genomic material, thus increasing biosafety in terms of immu-
nogenicity and cytotoxicity.13 Conditionally replicating adenovi-
ruses, which replicate selectively in tumor cells, are available.13

Given the ubiquity of adenoviruses in the environment, most 
people have previously been exposed to adenoviruses although 
immunity to the virus is generally strain-specific. Adenoviruses 
most commonly cause mild respiratory disease or conjunctivitis 
in healthy adults but can cause more serious illness, especially 
in immunocompromised persons. These viruses are transmit-
ted by direct contact, ingestion, aerosol, and percutaneous expo-

Acid Molecules, impl mented by the Recombinant DNA Advisory 
Committee.2 These guidelines stipulate protocol review by the 
Institutional Biosafety Committee and outline required contain-
ment and safety procedures. Most viral vectors are classified by 
the NIH as belonging to either Risk Group (RG) 1 (not associated 
with disease in healthy human adults) or RG2 (associated with 
human disease which is rarely serious and for which preventive 
or therapeutic interventions are often available). Biosafety level 
(BL) containment requirements are stipulated for each risk group 
(BL1 or BL2).39 In addition to RG1 agents, viral vectors containing 
less than 2/3 of a eukaryotic viral genome may be handled under 
BL1 conditions. However, most viral vectors used in animal 
research are either RG2 agents or do not meet this size require-
ment and therefore require BL2 containment and procedures dur-
ing preparation, manipulation, and injection. These precautions 
include restricted access, an appropriate laboratory set-up and 
signage, staff training, sharps safety, decontamination of waste 
prior to disposal, and personal protective equipment to prevent 
skin and mucous membrane exposure.7

For animal experiments involving most viral vectors used in 
research, the NIH Guidelines recommend BL2N (BL2–Animal; 
Figure 1) containment practices. Because of the operational chal-
lenges of continuous BL2N containment, further clarification was 
released for lentiviral vectors, recommending BL2N containment 
housing for 3 to 7 d.52 As discussed earlier, viral–host interac-
tions cannot always be predicted when viral vectors are used in 
transgenic animals, and accordingly, the NIH Guidelines stress 
that “serious consideration should be given to increasing the con-
tainment conditions.”39 Biosafety in Microbiologic and Biomedical 

Figure 1. Common viral vector terminology.
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a narrow host range, they are of interest in viral vector research 
because of their ability to infect both dividing and nondividing 
cells.15 However, they do not integrate efficiently into the host 
genome, and as such their expression is generally transient. AAV 
vectors get their name from their requirement for a helper plas-
mid or virus for propagation. Effective helper viruses include 
adenovirus, herpes simplex virus, vaccinia virus, and human 
papilloma virus. AAV cellular tropism is strain-dependent.18 AAV 
can infect humans and other primate species but are not known 
to cause disease. Approximately 80% of humans are seropositive 
to AAV strains.5

AAV vectors have a favorable safety record in clinical trials and 
preclinical animal studies.18,35 In one clinical trial, recombinant 
AAV vectors administered beneath the retina resulted in no de-
tectable systemic vector dissemination and no indication of any 
mounted immune response to the vector.22 Most risks associated 
with AAV viral vectors are theoretical in nature. For example, 
although wild-type AAV inserts at a known locus in the human 
genome with no ill effects, recombinant AAV vectors can inte-
grate randomly or at other points with potential prooncogenic 
results.26,40 In some animal models, the integration of recombinant 
AAV has been associated with an increased incidence of tumor 
formation, but this association has not been noted to occur in hu-
mans.45 Although ineffective in replication as an isolated agent, 
AAV have the potential for replication competence in the pres-
ence of a helper plasmid or virus, and stock solutions should be 
tested for the presence of other agents. However, autonomous 
replication has occurred under stressful genotoxic conditions (UV 
light exposure, hydroxyurea incubation) in some cell lines1,55 and 
differentiating keratinocytes.34 Finally, as hydrophilic nonenvel-
oped viruses, parvoviruses are known for their environmental 
stability.

Herpesviral Vectors
Herpesviruses are double-stranded enveloped DNA viruses 

(Baltimore classification 1) with relatively large genomes. Herpes-
viruses are ubiquitous in the animal kingdom but species-specific 
in their host tropism and are classified into 1 of 3 subfamilies (α, 
β, and γ). Herpes simplex virus types 1 and 2 (HSV1 and HSV2) 
are αherpesviruses, which are epitheliotropic cytolytic viruses 
that can form lifelong infections by establishing latency in neural 
tissue with intermittent recrudescence in response to stress and 
other factors.29 Because they are human pathogens, herpesviral 
vectors are classified under RG2. In all HSV vectors, genes that 
encode for accessory or essential proteins have been manipulated, 
such that their products minimally to completely inhibit viral 
replication and lytic ability, respectively.29 Viral stocks are then 
produced by using cells lines that provide these protein products 
through complementation.

Compared with the other viruses described in this review, HSV 
vectors are used only rarely in clinical trials, but their neural tro-
pism and ability to establish latency allowing a sustained trans-
gene expression make it an attractive target for gene therapy for 
peripheral neuropathies.7,23 Genetic manipulation has led to the 
creation of 3 types of HSV vectors: amplicon, replication-defec-
tive, and replication-competent. Created in the late 1980s, ampli-
con vectors contain the origin of replication and packaging genes 
but lack lytic function. Amplicons require transduction with a 
helper virus for competent infection and are used extensively in 
preclinical research due to their ability to accept very large inserts 

sure.12 Even in experimental animal models, establishing vertical 
transmission or germline transduction of adenoviruses is very 
difficult.24 Long-term shedding can occur through respiratory 
secretions and feces from asymptomatic carriers. However, hu-
mans who received an adenoviral vector through intravenous 
administration had minimal shedding in biologic fluids after 
48 h, due to sequestration by the liver.28 Hamsters and cotton rats 
(Sigmodon hispidus) are the only 2 common laboratory species in 
which unmanipulated human adenoviruses can replicate.13

Although natural disease is generally mild, adenoviruses are 
notoriously immunogenic. Adenoviral vectors are preferred for 
vaccination vectors, given their ready uptake by antigen pre-
senting cells, particularly Kupffer cells.10 Several episodes of 
inflammatory responses to adenovirus vectors in clinical trials 
have been documented, including one death after direct injec-
tion of an adenoviral vector into the hepatic artery.33 Some first-
generation adenoviral vectors, which retain a great proportion 
of the genome, have initiated dose-dependent apoptosis of vari-
ous target cells in vitro and in multiple mouse models in vivo, 
indicating a potential for direct cytotoxicity.51,56 The widespread 
distribution and tropism of adenoviruses supports the potential 
for intracellular recombination or complementation (Figure 1) 
of the vector with previously acquired wild-type adenovirus in 
either packaging cell lines or in vivo, thus making the adenoviral 
vector replication-competent. This risk can be reduced consider-
ably by using cell lines with decreased or no homology between 
vector and helper sequences.21 Another risk-reduction strategy is 
regular quality-control checks of viral vector stocks for low levels 
of contamination with replication-competent virus. No standards 
for this kind of monitoring are available currently, and threshold 
levels are determined arbitrarily by investigators.44

Adeno-associated Viral Vectors
Adeno-associated viral vectors (AAV), the most common par-

voviral vectors, are generally classified under RG1. Exceptions 
include synthetic or recombinant AAV constructs produced in 
the presence of a helper virus and those that contain a potentially 
harmful transgene (Appendix B1 of the NIH Guidelines).39 Par-
voviruses are nonenveloped single-stranded DNA viruses (Bal-
timore classification II). Although parvoviruses generally have 

Figure 2. PubMed searches for the terms ‘viral vector’ compared with 
‘viral vector biosafety’ for the indicated time intervals returned results 
indicating a steadily increasing and disproportionately higher num-
ber of publications focused on viral vector research as compared with 
publications focused specifically on viral vector biosafety. Searches per-
formed on 24 September 2016.
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than HIV1. Although HIV1 infections are the most common in 
the United States, HIV2 is an important cause of disease in other 
regions. Coinfection with HIV1 and HIV2 is infrequent compared 
with the well-recognized intercladal and intracladal HIV1 coin-
fections.9 HIV transmission occurs through mucous membrane 
exposure, direct contact with bodily fluids including sexual trans-
mission, percutaneous exposure, and vertical transmission.16 An-
tiviral therapy has been established to be effective in preventing 
HIV infection if used appropriately in the context of postexposure 
prophylaxis.

Lentiviral vectors are generally considered to be relatively safe, 
given their extensive genetic alterations in recent years through 
which components necessary for virus production have been 
split across multiple plasmids, some of which are integrated into 
the viral vector, and others that are expressed only within the 
packaging system.16 Each split of the lentiviral genome makes 
propagation outside of the cell line packaging system more dif-
ficult through mechanisms of complementation or recombination. 
Second-generation lentiviral vectors use 3 plasmids, third-gener-
ation vectors use 4 plasmids, and fourth-generation vectors use 
5 plasmids.19,25,46,50 Other alterations to increase safety include the 
production of self-inactivating vectors (Figure 1) and improved 
packaging systems that use less HIV genomic material.19,37

Clinical trials in which lentiviral vectors were used to treat ad-
renoleukodystrophy, a fatal demyelinating disease, yielded no 
adverse effects.22 However, the use of lentiviral vectors in research 
is still associated with potential risks, and the long-term safety of 
these clinical interventions is still being evaluated. An initial in 
vitro study showed no propagation of replication-deficient len-
tiviral vectors in cell culture after 3 washes with PBS.1 However 
a later study found that cells incubated with lentiviral vectors 
can expose secondary target cells to infection despite repeated 
washings (that is, 2 washes) and in the absence cell-to-cell contact 
both in vitro and in vivo.41 Although these findings conflict, they 
might indicate a potential route of transmission to nontarget tis-
sues through spill-over shedding of viral particles into the cellular 
supernatant.41 Although lentiviral vectors are less associated with 
insertional mutagenesis (Figure 1) than other retroviruses, these 
vectors still provide evidence regarding off-target effects. For ex-
ample, one participant in a clinical trial to treat β-thalassemia by 
cells transduced by using self-inactivating lentivirus demonstrat-
ed the emergence of a partially dominant cell clone of myeloid 
progenitor origin after injection with transduced hematopoietic 
stem cells. This can either represent a stochastic event in the con-
text of a low initial number of transduced cells or the precursor 
to a potentially malignant progression which is always a concern 
for lentiviral integration events.11 Long-term follow-up of this 
patient is ongoing at this time.11 Nevertheless, lentiviruses are not 
stable in the environment and are susceptible to most disinfec-
tants, making decontamination straightforward.

Discussion
In 2015, a survey to determine common containment hous-

ing and practices among institutions involved in viral vector use 
in animal research was conducted by using an online question-
naire (Research Suite, Qualtrics, Provo, UT) sent through the 
CompMed listserve (AALAS, Memphis, TN). Responses were 
received from a total of 44 institutions, of which 41 (93%) were 
academic institutions and nonprofit organizations. Table 1 pres-
ents information gathered from the participants, some of whom 

(100 kb).48 Improvements were made to avoid stock contamina-
tion with helper viruses by further deletion of packaging genes. 
Replication-defective HSV vectors have come a long way since 
their inception in the early 1990s, with the deletion of essential 
replicative genes. One of the largest roadblocks to the use of repli-
cation-deficient HSV vectors is direct cytotoxicity, presumptively 
due to replication-independent mechanisms of cytoskeletal dis-
ruption.4,27 In 2015, the development of a third-generation HSV 
vector capable of long-term gene expression without cytotoxicity 
or interference with cell division represents one of the final break-
throughs needed to make HSV a widely useful gene-delivery 
technology.36 Finally, replication-competent HSV vectors are in 
the advanced stage of development for oncolytic cancer therapy.

Although molecular alterations to the viral genome have dra-
matically reduced virus-associated risks, HSV remains a known 
human pathogen with inflammatory and immunomodulatory 
effects. Although the seroprevalence of both HSV1 and HSV2 is 
high in the United States (approximately 53% and 16%, respec-
tively),6 few solid data that support in vivo recombination or 
complementation are available. Primary infection with HSV1 can 
be mild or inapparent and usually occurs in early childhood. In 
active infections, lesions are generally limited to the mucocutane-
ous junctions, genitalia (HSV2), or epidermis. However, fatal me-
ningoencephalitis can occur, especially in immunocompromised 
persons.7,31 HSV are transmitted by direct contact and mucous 
membrane exposure with body excretions and respiratory drop-
lets.2 Apparently asymptomatic carriers can shed sporadically. 
In rats infected with wild-type HSV, subsequent intracranial in-
jection of HSV vectors did not lead to viral reactivation of the 
vector.54 However, multiple strains of HSV were isolated from 
the neuronal tissue of a single patient, thus perhaps supporting 
intratypic recombination rather than successive infection.33 As an 
enveloped virus, HSV is inherently unstable in the environment. 
Although susceptible to many common disinfectants (bleach, Ly-
sol [Reckitt Benckiser, Parsippany, NJ], Alcide [Ecolab, St Paul, 
MN]), HSV2 is more thermolabile than HSV1, and increased dis-
infectant concentrations or prolonged contact times may be re-
quired for inactivation, depending on the subtype.14

Lentiviral Vectors
Lentiviruses are a type of retrovirus (Baltimore classification 

VII) and consist of a single-stranded positive-sense RNA se-
quence that is transcribed into a DNA and integrated into the host 
genome, causing persistent infection. Lentiviruses have several 
unique characteristics that may make them preferred over vectors 
derived from other genera of retroviruses, such as gammaretrovi-
ruses, including integration into nondividing cells and the ability 
to transduce stem cells more efficiently, such that lower infection 
doses can be used.38 Most lentiviral vector systems are based on 
altered HIV types 1 and 2 and contain deletions or alterations 
of some or all pathogenic (vpr, vpx, and nef) and replication-de-
pendent (gag–pol and env) genetic elements, depending on which 
lentiviral vector generation is used.16 Unmanipulated HIV1 and 
HIV2 are in RG3, but manipulated lentiviruses used as viral vec-
tors (that is, altered HIV1 and HIV2) are in RG 2.39

Wildtype HIV1 and HIV2 infect CD4+ T helper cells, causing 
an immunosuppressed state and eventual progression to AIDS, 
which is characterized by the development of opportunistic infec-
tions.16 In comparing the 2 subtypes, HIV2 has a lower infectivity 
rate, longer asymptomatic period, and slower disease progression 
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between uses to prevent transmission by fomites. When placed 
on untreated plastic, recombinant AAV and adenoviral vectors 
were recoverable by cell culture for 3 and 14 d respectively.44 In 
an evaluation of several disinfectants for in vitro efficacy against 
viral vectors (lentiviral, adenoviral, and AAV), only Virkon S (Du-
pont, Wilmington, DE) demonstrated robust surface disinfection 
and minimal aversion, making it preferable for use on surfaces 
that rodents contact.8 For many studies, sanitation through a cage 
wash system is appropriate because temperatures achieved by 
most industrial cage washers (74 °C for 6 min) are sufficient to 
eliminate the risk of adenoviral transmission.32,42 Similar precau-
tions likely will be sufficient for lentiviruses and herpesviruses as 
well, given their relative instability in the environment.

For standard replication-deficient adenoviral, third-generation 
herpesviral vectors, and third- and fourth-generation lentiviral 
vectors, we recommend an initial 72-h period of ABSL2 contain-
ment followed by reclassification to ABSL1 housing after a com-
plete cage change. Following the recommendations of the NIH 
Guidelines together with the demonstrated safety of AAV vectors, 
ABSL1 housing is sufficient provided that the encoded transgene 
is deemed safe and appropriate precautions are taken during vec-
tor preparation and administration.
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